(3S-5S-6E)-7-[3-(4-fluorophenyl)-1-(propan-2-yl)-1H-indol-2-yl]-3-5-dihydroxyhept-6-enoic-acid and Candidiasis

(3S-5S-6E)-7-[3-(4-fluorophenyl)-1-(propan-2-yl)-1H-indol-2-yl]-3-5-dihydroxyhept-6-enoic-acid has been researched along with Candidiasis* in 1 studies

Other Studies

1 other study(ies) available for (3S-5S-6E)-7-[3-(4-fluorophenyl)-1-(propan-2-yl)-1H-indol-2-yl]-3-5-dihydroxyhept-6-enoic-acid and Candidiasis

ArticleYear
Repurposing of Fluvastatin Against Candida albicans CYP450 Lanosterol 14 α-demethylase, a Target Enzyme for Antifungal Therapy: An In silico and In vitro Study.
    Current molecular medicine, 2019, Volume: 19, Issue:7

    The incidence of fungal infections has increased significantly. Specifically the cases of candida albicans infection are increasing day by day and their resistance to clinically approved drugs is a major concern for humans. Various classes of antifungal drugs are available in the market for the treatment of these infections but unfortunately, none of them is able to treat the infection.. Thus, in the present investigation, we have repurposed the well-known drug (Fluvastatin) in the treatment of Candida albicans infections by using in silico, in vitro and ex vivo techniques.. Computational and in vitro techniques.. Firstly, we developed and validated a simple model of CYP45014α-lanosterol demethylase of Candida albicans by using crystal structure of Mycobacterium tuberculosis (1EA1). Further, fluvastatin was docked with a validated model of CYP45014α-lanosterol demethylase and revealed good binding affinity as that of fluconazole. In vitro results (Percentage growth retardation, Fungal growth kinetics, Biofilm test and Post antifungal test) have shown good antifungal activity of fluvastatin. Finally, the results of MTT assay have shown non-cytotoxic effect of fluvastatin in murine splenocytes and thymocytes.. However, further in vivo studies are required to confirm the complete role of fluvastatin as an antifungal agent.

    Topics: Animals; Antifungal Agents; Candida albicans; Candidiasis; Computational Biology; Drug Repositioning; Fluvastatin; Humans; Mice; Microbial Sensitivity Tests; Sterol 14-Demethylase

2019